In the last five years, biology has undergone a seismic shift as researchers around the globe have embraced a revolutionary technology called gene editing. It involves the precise cutting and pasting of DNA by specialized proteins—inspired by nature, engineered by researchers. These proteins come in three varieties, all known by their somewhat clumsy acronyms: ZFNs, TALENs, and CRISPRs. But it’s Crispr, with its elegant design and simple cell delivery, that’s most captured the imagination of scientists. They’re now using it to treat genetic diseases, grow climate-resilient crops, and develop designer materials, foods, and drugs.
So how does it work?
When people refer to Crispr, they’re probably talking about Crispr-Cas9, a complex of enzymes and genetic guides that together finds and edits DNA. But Crispr on its own just stands for Clustered Regularly Interspaced Palindromic Repeats—chunks of regularly recurring bits of DNA that arose as an ancient bacterial defense system against viral invasions.
Viruses …
READ MORE ON WIRED.COM